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We review recent progress in developing potential energy and dipole moment
surfaces for polyatomic systems with up to 10 atoms. The emphasis is on global
linear least squares fitting of tens of thousands of scattered ab initio energies using a
special, compact fitting basis of permutationally invariant polynomials in Morse-
type variables of all the internuclear distances. The computational mathematics
underlying this approach is reviewed first, followed by a review of the practical
approaches used to obtain the data for the fits. A straightforward symmetrization
approach is also given, mainly for pedagogical purposes. The methods are
illustrated for potential energy surfaces for CHþ5 , (H2O)2 and CH3CHO. The
relationship of this approach to other approaches is also briefly reviewed.

Keywords: potential energy surfaces; invariant fitting; CHþ5 ; CH3CHO; water
dimer

Contents page

1. Introduction 578

2. Methods 580
2.1. Monomial symmetrization 581
2.2. Theory of polynomial invariants 586
2.3. Application to potential energy surfaces 588

2.3.1. Two-atom and three-atom molecules 589
2.3.2. A2B2 molecules 590
2.3.3. A3B2 molecules 590

2.4. Dipole moment 591
2.5. Library of invariant polynomial basis functions 592

3. Applications 592
3.1. CHþ5 595
3.2. (H2O)2 598
3.3. CH3CHO 601

yCurrent Address: International Atomic Energy Agency, Division of Physical and Chemical
Sciences, P.O. Box 100, Wagramerstrasse 5, A-1400 Vienna, Austria.

*Corresponding author. Email: jmbowma@emory.edu

ISSN 0144–235X print/ISSN 1366–591X online

� 2009 Taylor & Francis

DOI: 10.1080/01442350903234923

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



4. Summary 603

Acknowledgements 604

References 604

1. Introduction

The potential energy surface (PES) plays a central role in concepts and theories of
molecular interactions spanning so-called non-bonding and bonding interactions that
govern molecular structures and dynamics. The PES also plays a central role in the
computation and prediction of structure and dynamics. In the Born–Oppenheimer
(BO)approximation there exists a PES for each electronic state of the molecular system.
Thus, as is well known, there are many PESs and their isolation from one another is an
approximation, albeit often an excellent one.

It is important to note that there are two ways to think about a PES. One is as the
eigenvalue of the electronic Schrödinger equation plus the nuclear repulsion energy, which
in the BO approximation is a function of the nuclear coordinates. Thus this energy can be
determined ‘on the fly’, that is directly at the nuclear coordinates of interest by solving the
electronic Schrödinger equation at each value of these coordinates. The other way to think
about the PES is as an analytical function of the nuclear coordinates. Certainly historically
the latter way of thinking has dominated the development of the PES in chemical physics
and computational chemistry. Ubiquitous examples include the harmonic, Morse and the
Lennard-Jones potentials. These are two-body potentials and they can be used to describe
most diatomic molecule interactions. The usefulness of having such functional forms for
these simple cases is clear and not worth belabouring.

The extension of functional representations of the potential to larger molecules has
by and large not been done. Of course if the many-body interactions were just a sum
of pairwise ones then the extension would be straightforward and mathematically
trivial. Representations of the many-body PES based on two-body interactions are in
fact widespread. However, such representations do not describe most chemical
reactions, which are inherently not two-body additive. Perhaps the HþH2 reaction
is the simplest example of this. This reaction has a barrier to exchange of the H atom
and a simple pairwise interaction based on, say, the Morse potential for H2 cannot
describe this and instead would predict a bound H3 molecule. A functional form that
semi-quantitatively describes this barrier has been derived based on simple valence
bond theory and is known by the acronym LEPS for London–Eyring–Polanyi–Sato.
This functional form was used extensively to study triatomic reactions in the 1960–
1980s. The function contains several parameters than can be optimized/selected for a
specific reaction. If high-level ab initio information is available for, say, the barrier
height these parameters can be adjusted to optimize agreement with this information.
Otherwise the parameters were often adjusted empirically to optimize agreement with
experiment.

As ab initio electronic energy calculations became more efficient and accurate it soon
became clear that the LEPS functional form was not flexible enough to represent this high-
quality data precisely. More mathematical forms to represent the potential were needed.
For triatomic systems the Rotated Morse Potential was one such form, which however still
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had an underlying model as its basis, as is clear from the name. This model was

subsequently superseded for triatomic systems by strictly mathematical fitting approaches

such as 3D splines, and related methods, nonlinear fitting based on physically based

functional forms, many-body expansions, etc. Most applications of these numerical
methods, until quite recently, were restricted to three-atom systems. Some of these

techniques were applied to four-atom reactions but by mainly adding non-reactive degrees

of freedom onto the three-atom methods. Excellent reviews of these methods along with

applications up to 1989 are given by Schatz [1] and more recently by Ho and Rabitz [2].
The fitting techniques for triatomics do not generalize favourably to larger molecules.

This is easily seen even for tetratomics, which have six internal degrees of freedom. A
direct-product representation of the potential for, say, a 6D spline would require of the

order of 106 electronic energies, compared to of the order of 103 electronic energies for

triatomics. For N atoms this scaling is of the order of 103N�6 and obviously is impractical

beyond triatomics.
This exponential scaling has stimulated many groups to avoid the issue of fitting and

use the ‘direct-dynamics’ approach, also known as ‘ab initio molecular dynamics’ (AIMD)
[3–11], where the citations are but a small sample of the work in this field. The

attractiveness of the AIMD approach is, however, counterbalanced by its well-known

limitations, i.e., the level of ab initio theory, the number of propagation time steps, etc. due

to its large computational overhead. The focus of this article is the global, analytical

representation of PESs in high dimensionality, i.e., for molecules with more than four
atoms. However, as will be discussed in detail below, AIMD is used as one major means to

generate the database of electronic energies for this representation.
Specifically, we review an approach we have developed to represent global PESs for

up to 10 atoms of the order of 104 or 105 ab initio electronic energies. This approach has

been applied to the following molecules and reactions: CHþ5 [12,13], (H2O)2 [14,15], (H2O)3
[16], C2H

þ
3 [17], H3O

�
2 [18], H5O

þ
2 [19], CHOCH2CHO (malonaldehyde) [20], C2H3 [21],

HþCH4 [22], FþCH4 [23], FCH
�
4 [24], CþC2H2 [25], NO2þOH [26].

That one can obtain accurate global PESs for such large systems with only 104–105

energies is at first glance quite surprising given the high dimensionality of the space

spanned. For six atoms the space is 12d and for nine atoms it is 21d. The key to the

approach described in detail in the following sections is to explicitly make use of the fact

that many molecules of interest contain identical atoms, e.g., H atoms. Since the PES must
be invariant with respect to all permutations of identical atoms much of the configuration

space is redundant and it is this fact that is exploited to reduce the size of the electronic

energy database. Even before this reduction was realized, it was clear that permutational

invariance can be essential in a variety of dynamics applications. Examples of this are the

isomerization of acetylene to vinylidene and the unimolecular dissociation of formalde-
hyde. Our earliest approach to enforce permutational symmetry was done by simply

replicating electronic energies for permutationally equivalent configurations for both C2H2

[27] and H2CO [28] and then to fit the enlarged dataset. This approach did produce a PES

that is numerically invariant with respect to permutations, however, the number of terms

in the representation had to be large in order to represent the additional data. Clearly such

an approach cannot be used for a molecule such as CHþ5 , where the order of the
permutation group is 5!¼ 120, and thus the size of the dataset to fit would be of the order

of 106.
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Clearly the ideal approach is to incorporate permutational symmetry directly into the
PES representation by using a fitting basis that is permutationally invariant.
The implementation of this approach is by no means trivial. This invariance property of
the PES was clearly stated by Murrell et al. in their classic book published in 1984 [29].
They noted that an invariant fitting basis with this property can be represented in terms of
what they termed an integrity basis. Explicit expressions for such a basis for triatomic
molecules and for the special case of four identical atoms were given. The variables chosen
for this basis were the internuclear distances; this is the obvious choice since they form a
closed set under permutations. The techniques they used to generate this basis are in their
words rather tedious even for the case of three identical atoms. To the best of our
knowledge the use of this basis has not been developed beyond three and four identical
atoms by this group [30].

This review describes the progress we have made developing PESs that are manifestly
permutationally invariant. This is described in the next section. A brief presentation of
related techniques to represent the dipole moment will also be given in that section.
Following that, illustrations of the method are given for global PESs for CHþ5 , (H2O)2,
and CH3CHO. A summary and conclusions are given in the final section.

Before concluding this Introduction it is important to take note of other effective
strategies to deal with high-dimensional potential energy surfaces. One is the modified
Shepard approach, which has been advanced and developed by Collins and co-workers
[31–35]. This approach represents the PES as a weighted sum of force fields, centred at
numerous reference geometries. These force fields are Taylor series representations of the
potential, typically truncated at fairly low order, using inverse internuclear distances.
Other strategies include the n-mode representation of the potential [36–40], the related cut-
high dimensional model representation [41,42] and the potfit method [43]. These
approaches will be discussed in more detail at the end of the next section. It is also
important to note that numerous groups are investigating a variety of strategies to
represent PESs from ab initio electronic energies [44–56]. However, to date, these other
approaches do not directly incorporate permutational symmetry into the fitting. The
modified Shepard approach does enforce permutational invariance by replicating force
fields, as discussed in more detail in the next section.

2. Methods

In this section we give the details of two approaches to explicitly incorporate
permutational invariance into the global representation of potential energy surfaces.
These approaches use basis functions that are invariant with respect to permutations of
like atoms. In general any approach that incorporates this invariance property explicitly
into the representation of potential must express the potential in terms of a set of variables
that is closed under all permutations. Cartesian coordinates are an obvious but clearly
non-optimum choice. Another choice, and the one we have made, is the set of all
internuclear distances (in fact functions of these distances as described in detail below).
The first approach, which we denote as monomial symmetrization, is given largely for
pedagogical purposes. In this approach, which was briefly mentioned in [19], direct
symmetrization of monomial basis functions is done. Details of this approach along with
five examples are given in the next section. The relationship of this approach to other
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methods to represent high-dimensional PESs will be briefly described. Following that in

Sections 2.2 and 2.3 we give an account of results from invariant polynomial theory, where

invariant bases are obtained in a very compact fashion in terms of primary and secondary

polynomials. Some of the examples given for the monomial symmetrization approach are

reconsidered using this more compact approach. That will be followed by a brief

description of permutationally invariant fitting of the dipole moment.

2.1. Monomial symmetrization

To begin we motivate the invariant basis approach by recalling earlier work done on the

acetylene/vinylidene PES [27]. To describe the isomerization to vinylidene it was necessary

to account for the permutational symmetry of the HH and CC atoms. This was done by

replicating electronic energies representing the potential given by the following expansion

in multinomials:

V ¼
XM
m¼0

Cabcdef ya12y
b
13y

c
14y

d
23y

e
24y

f
34

h i
; ðm ¼ aþ bþ cþ dþ eþ f Þ, ð1Þ

where yij is a Morse variable, which for the C2H2 PES was given by yij¼ 1� exp(�rij/a).

Currently we use yij¼ exp(�rij/a) and remarks about the choice of Morse variables

instead of the rij will be given in the next section. The summation is over all powers of

the yij subject to the constraint that the total degree m is at most M. (For simplicity we

denote the sum over powers by the single index m.) In the above expression the H atoms

are labelled 1, 2, and the C atoms are labelled 3 and 4. Internuclear distances (and thus

the yij) are given using the normal lexical order i5 j, and N is the number of atoms,

which is four in this example. The convention in the monomial follows the obvious

pattern. The linear coefficients were determined using a standard linear least squares

method. The dataset in the fit consisted of electronic energies, three-quarters of which

were obtained by replicating energies upon interchanging the two groups of identical

atoms. The resulting dataset was still small enough that the least squares fitting effort

was trivial. However, a large number of coefficients were numerically equal. This was a

direct consequence of taking account of the permutational symmetry only by replicating

the data.
Clearly as the number of variables in V increases the number of terms in the above

representation grows nonlinearly for a fixed M and replicating data ceases to be a viable

option. It is also clear from the above example that monomials with identical coefficients

could be grouped into a single polynomial given by the sum of monomials multiplied by

a single coefficient. Obviously this implies that symmetrization of the monomial basis

should be done at the outset, thus eliminating the redundancy in coefficients and

eliminating the need to replicate energies. It is quite straightforward to proceed with this

symmetrization, which we illustrate below for five molecule types. We do this mainly for

pedagogical purposes as a more efficient and mathematically elegant approach, based on

invariant polynomial theory, is the one we have implemented. The details of that

approach will be given after presentation of the straightforward symmetrization

approach.
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To proceed, we replace Equation (1) with the symbolic expression

V ¼
XM
m¼0

Dabcdef S ya12y
b
13y

c
14y

d
23y

e
24y

f
34

h i
, ð2Þ

where ‘S’ is the operator that symmetrizes monomials. To implement the symmetrization
all that is needed is the mapping of atom permutations to permutations of the internuclear
distances. This is straightforward to do as illustrated for A3 molecules. Let 1, 2, 3 denote
the initial arrangement of the three atoms. Consider the permutation 2, 3, 1. Initial
internuclear distances r12, r13, r23 map onto r23, r21, r31, which we rewrite in normal order
as r23, r12, r13. Thus, the monomial r a12r

b
13r

c
14 maps onto r a23r

b
12r

c
13 which can be rewritten as

the original monomial with permuted powers as r b12r
c
13r

a
23. Adding to these two monomials

the four others corresponding to the four additional permutations gives a fully
symmetrized sum of monomials. Replacing rij with yij then yields the symmetrized basis
function for the representation of V. Different from Equation (1), in Equation (2) it is
understood that only a single term, and only a single unknown coefficient Dabcdef, appears
for every set of tuples (a, b, c, d, e, f ) that are permutationally equivalent.

The results of this explicit procedure are given for A2B, A3, A2B2, A3B and A3B2

molecules in the tables below. For pedagogical purposes we use internuclear distances rij in
these tables instead of yij, with the understanding that the latter variables are the ones used
in the representation of V. The first row of each table lists the numerical labels of all atoms
starting with the largest group of identical atoms, followed by the next group of identical
atoms. The next column in this row gives the monomial corresponding to this original
order of atoms and the third column gives the monomial in normal order. The subsequent
rows in these tables gives the atom labels for all permutations of like atoms followed by the
permutation of the original monomial (permuting the indicies), followed by the monomial
in normal order, i.e, with the internuclear distances arranged as rij and with permuted
powers.

First consider triatomic molecules A2B and A3. Table 1 gives these results for the
simplest example A2B which has a single permutation to consider. As seen, symmetrizing
the single monomial gives two monomials and thus replacing the single monomial
ya12y

b
13y

c
23 with ya12ð y

b
13y

c
23þ yc13y

b
23) leads to a invariant basis function.

The results for A3 molecules are given in Table 2. As seen, the symmetrized monomial
consists of 3!¼ 6 terms and the symmetrized basis function consists of the sum of the six
monomials (in the yij) in Table 2.

The results for A2B2 molecules, of which C2H2 is an example, are given in Table 3. In
this case there are 2!2!¼ 4 permutations and the symmetrized basis function consists of
four terms.

Table 1. Symmetrized monomials for A2B molecules.

Atom labels Monomial Normal order

1 2 3 r a12r
b
13r

c
23 r a12r

b
13r

c
23

2 1 3 r a12r
b
23r

c
13 r a12r

c
13r

b
23

Symmetrized term r a12r
b
13r

c
23þ r a12r

c
13r

b
23
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The next example is A3B molecules with results shown in Table 4 and the final example

we consider is A3B2 molecules with results shown in Table 5. Here there are 12

permtuations of 10 internuclear distances.
We have noted above that the use of symmetrized basis functions reduces the number

of independent terms in the representation of V. That is there are fewer terms in

Table 4. Symmetrized monomials for A3B molecules.

Atom labels Monomial Normal order

1 2 3 4 r a12r
b
13r

c
14r

d
23r

e
24r

f
34 r a12r

b
13r

c
14r

d
23r

e
24r

f
34

2 1 3 4 r a12r
b
23r

c
24r

d
13r

e
14r

f
34 r a12r

d
13r

e
14r

b
23r

c
24r

f
34

3 2 1 4 r a23r
b
13r

c
34r

d
12r

e
24r

f
14 r d12r

b
13r

f
14r

a
23r

e
24r

c
34

1 3 2 4 r a13r
b
12r

c
14r

d
23r

e
34r

f
24 r b12r

a
13r

c
14r

d
23r

f
24r

e
34

3 1 2 4 r a13r
b
23r

c
34r

d
12r

e
14r

f
24 r d12r

a
13r

e
14r

b
23r

f
24r

c
34

2 3 1 4 r a12r
b
13r

c
14r

d
23r

e
24r

f
34 r b12r

d
13r

f
14r

a
23r

c
24r

e
34

Symmetrized term r a12r
b
13r

c
14r

d
23r

e
24r

f
34 þ � � � þr b12r

d
13r

f
14r

a
23r

c
24r

e
34

Table 2. Symmetrized monomials for A3 molecules.

Atom labels Monomial Normal order

1 2 3 r a12r
b
13r

c
23 r a12r

b
13r

c
23

2 1 3 r a12r
b
23r

c
13 r a12r

c
13r

b
23

3 2 1 r a23r
b
13r

c
12 r c12r

b
13r

a
23

1 3 2 r a13r
b
12r

c
23 r b12r

a
13r

c
23

3 1 2 r a13r
b
23r

c
12 r c12r

a
13r

b
23

2 3 1 r a23r
b
12r

c
13 r b12r

c
13r

a
23

Symmetrized term r a12r
b
13r

c
23 þ r a12r

c
13r

b
23 þ � � � þr c12r

a
13r

b
23 þ r b12r

c
13r

a
23

Table 3. Symmetrized monomials for A2B2 molecules.

Atom labels Monomial Normal order

1 2 3 4 r a12r
b
13r

c
14r

d
23r

e
24r

f
34 r a12r

b
13r

c
14r

d
23r

e
24r

f
34

2 1 3 4 r a12r
b
23r

c
24r

d
13r

e
14r

f
34 r a12r

d
13r

e
14r

b
23r

c
24r

f
34

1 2 4 3 r a12r
b
14r

c
13r

d
24r

e
23r

f
34 r a12r

c
13r

b
14r

e
23r

d
24r

f
34

2 1 4 3 r a12r
b
24r

c
23r

d
14r

e
13r

f
34 r a12r

e
13r

d
14r

c
23r

b
24r

f
34

Symmetrized term r a12r
b
13r

c
14r

d
23r

e
24r

f
34 þ � � � þr a12r

e
13r

d
14r

c
23r

b
24r

f
34

International Reviews in Physical Chemistry 583

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Equation (1) than in Equation (2). The reduction is bounded above by the order of the

symmetric group. The number of terms in each representation can be obtained explicitly

using the Molien series, which is given below. For now we use the results of that

calculation to present in Table 6 the number of terms for a series of three, four, and five

atom molecules and for total polynomial orders 5–8. Note the number of terms for a PES

representation with no symmetrization, Equation (1), is given by the number of terms for

Table 5. Symmetrized monomials for A3B2 molecules.

Atom labels Monomial Normal order

1 2 3 4 5 r a12r
b
13r

c
14r

d
15r

e
23r

f
24r

g
25r

h
34r

i
35r

j
45 r a12r

b
13r

c
14r

d
15r

e
23r

f
24r

g
25r

h
34r

i
35r

j
45

2 1 3 4 5 r a12r
b
23r

c
24r

d
25r

e
13r

f
14r

g
15r

h
34r

i
35r

j
45 r a12r

e
13r

f
14r

g
15r

b
23r

c
24r

d
25r

h
34r

i
35r

j
45

3 2 1 4 5 r a23r
b
13r

c
34r

d
35r

e
12r

f
24r

g
25r

h
14r

i
15r

j
45 r e12r

b
13r

h
14r

i
15r

a
23r

f
24r

g
25r

c
34r

d
35r

j
45

1 3 2 4 5 r a13r
b
12r

c
14r

d
15r

e
23r

f
34r

g
35r

h
24r

i
25r

j
45 r b12r

a
13r

c
14r

d
15r

e
23r

h
24r

i
25r

f
34r

g
35r

j
45

3 1 2 4 5 r a13r
b
23r

c
34r

d
35r

e
12r

f
14r

g
15r

h
24r

i
25r

j
45 r e12r

a
13r

f
14r

g
15r

b
23r

h
24r

i
25r

c
34r

d
35r

j
45

2 3 1 4 5 r a23r
b
12r

c
24r

d
25r

e
13r

f
34r

g
35r

h
14r

i
15r

j
45 r b12r

e
13r

h
14r

i
15r

a
23r

c
24r

d
25r

f
34r

g
35r

j
45

1 2 3 5 4 r a12r
b
13r

c
15r

d
14r

e
23r

f
25r

g
24r

h
35r

i
34r

j
45 r a12r

b
13r

d
14r

c
15r

e
23r

g
24r

f
25r

i
34r
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Table 6. Number of terms for indicated molecules versus total order indicated.

Molecule 5 6 7 8

A3 16 23 31 41
A2B 34 50 70 95
ABC 56 84 120 165
A4 40 72 120 195
A3B 103 196 348 590
A2B2 153 291 519 882
A2BC 256 502 918 1589
ABCD 462 924 1716 3003
A5 64 140 289 580
A4B 208 495 1101 2327
A3B2 364 889 2022 4343
A3BC 636 1603 3737 8163
A2B2C 904 2304 5416 11910
A2BCD 1632 4264 10208 22734
ABCDE 3003 8008 19448 43758
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molecule types with no identical atoms. As seen, there is a large reduction in the

number of terms using the symmetrized representation of V and also note that as the total

degree increases the reduction factor approaches the order of the relevant symmetric

group.
Before proceeding to the next subsection we make some observations about the

representation of the potential given by the unsymmetrized restricted sum of monomials,

Equation (1), and n-mode [36–40] and cut-high dimensional model [42,57,58] representa-

tions of the potential. Both of these representations decompose the full-dimensional

potential, in, say f degrees of freedom, into a sum of lower dimensional terms. In the

n-mode representation specifically, the f-mode potential in normal coordinates, denoted

collectively by Q, is given by

VðQÞ ¼ V ð0Þ þ
X
i

V
ð1Þ
i ðQiÞ þ

X
ij

V
ð2Þ
ij ðQi,Qj Þ þ

X
ijk

V
ð3Þ
ijk ðQi,Qj,QkÞ þ � � � , ð3Þ

where V (0) is a constant, the one-mode terms, V
ð1Þ
i ðQiÞ, are the cuts through the hyperspace

of normal coordinates with just one coordinate varying at a time, the two-mode terms,

V
ð2Þ
ij ðQi,Qj Þ, are potentials in all pairwise variations of the coordinates, etc. Each of the

terms in each summation is an intrinsic p-mode potential, because they each vanish if one

of the variables is zero. The efficiency of this representation is realized if it can be

accurately truncated at much less than full f-mode terms. (This is explicitly made use of in

the vibrational analysis code Multimode [36–38] and similar codes [39,40].)
Now consider the monomial representation of the potential, Equation (1), and note

that formally that expression can be rewritten as

V ¼ V ð0Þ þ V ð1Þ þ V ð2Þ þ V ð3Þ þ V ð4Þ þ � � � , ð4Þ

where V(0) is a constant and

V ð1Þ ¼
X
i

V ð1Þð yiÞ,

V ð1Þð yiÞ ¼
X
n

C ðiÞn yni ,

V ð2Þ ¼
X
i,j

V ð2Þð yi, yj Þ,

V ð2Þð yi, yj Þ ¼
X
m,n

C ði,j Þm,n y
n
i y

m
j ,

ð5Þ

and so forth, in principle up to a full f-mode term (where f equals the number of

internuclear distances). However, if the maximum sum of powers in Equation (1), M, is

less than the number of variables in V, which it typically is for molecules of more than four

atoms, then an n-mode truncation is realized. Clearly each of these terms can be

symmetrized and the resulting representation is then both truncated and permutationally

invariant.
As one example of this effective mode reduction, consider the potential for the Zundel

cation, H5O
þ
2 , where the number of Morse variables is 21. The accurate PES for this cation

was based on fitting tens of thousands of CCSD(T) electronic energies using full

permutational symmetry, containing terms that at most involve seven variables [19].
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Thus, from the perspective of the n-mode representation, the H5O
þ
2 potential is truncated

at the seven-mode term. It is of interest to note that this PES has been used in quantum
calculations of the IR spectrum of H5O

þ
2 [59,60], as well as several classical MD

calculations of this spectrum [61,62]. In the impressive Multiconfiguration Time
Dependent Hartree (MCTDH) quantum calculations by Meyer and co-workers [59] the
n-mode representation of the PES was an essential component of the calculation to make it
feasible. In this case the so-called potfit representation of the potential i.e., a product of
one-mode potentials, developed by Meyer and co-workers specifically for use in MCTDH
calculations [43], was not able to be used effectively for the H5O

þ
2 application.

Note the n-mode, cut-high dimensional model and potfit representations are not (at
least currently) permutationally invariant. Post symmetrization of these representations is
possible, perhaps by following the approach taken in the modified Shepard approach. This
is done by replacing the non-symmetrized representation

VðZ Þ ¼
XN
i¼1

wiðZ ÞTiðZ Þ

with one replicating the force fields in variables Z (inverse internuclear distances), Ti(Z),
by [63]

VðZ Þ ¼
X
g2G

XN
i¼1

wiðZ; gÞTiðZ; gÞ,

where the outer sum is over the elements of the relevant symmetric group. Thus, in the
application to CHþ5 [64], N local force fields were evidently replicated 120 times.

Next we present the essentials of the theory of polynomial invariants which leads to
more efficient representation of permutationally invariant bases. These are the bases used
to obtain the numerous PESs mentioned in the Introduction.

2.2. Theory of polynomial invariants

We begin with elements of invariant polynomial theory of relevance to a compact
representation of potential energy surfaces that are invariant under the action of a finite
group. The mathematical background is classical, and can found in the monograph by
Derksen and Kemper [65], which emphasizes the constructive computer-algebra aspects of
the theory.

Given an n-dimensional vector space V over the field K (the real or the complex
numbers), a polynomial on V means a polynomial of n real or complex variables, say p(x),
x¼ (x1, . . . , xn). The set of all polynomials on V is denoted K [V ]. The polynomials form
themselves a vector space over K: if p and q are polynomials and � and � are scalars
(elements of K) then �pþ �q is a polynomial, and the addition of polynomials and
multiplication by scalars satisfy the familiar rules of arithmetic. The polynomials also form
a (commutative) ring: if p and q are polynomials then so are pþ q and pq, the
commutative, associative, and distributive laws are satisfied (commutative also for
multiplication), there is a zero element (p(x)¼ 0) and a unit element (p(x)¼ 1), and there is
an inverse for addition (pþ (�p)¼ 0), but not in general for multiplication (only the non-
zero constant polynomials have a multiplicative inverse). Finally, combining the vector
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space and the ring properties, K [V ] is said to form a (commutative) algebra; i.e., a vector
space in which elements may be multiplied and again familiar rules of arithmetic are

satisfied. As a vector space K [V ] is infinite-dimensional, but it may be written as a direct
sum of finite-dimensional vector spaces:

K ½V � ¼
X1
k¼0

K ½V �k ð6Þ

in which K [V ]k represents the vector space of homogeneous polynomials of precise degree
k together with the zero polynomial. The degrees of homogeneous polynomials satisfy the
rule deg(pq)¼ deg(p)deg(q). As a vector space or algebra K [V ] is said to be graded by total

degree.
We next consider the case where V carries a representation of a group G. Thus, an

element g2G defines an invertible linear mapping g :V!V and we have the group
composition law: for g1, g22G and x2V, g2(g1x)¼ (g2g1)x. Associated with the action of
G on V is an action of G on K[V ]; if g2G and p2K [V ] then (gp)(x)¼ p(g�1x). (It has to be

g�1 on the right-hand side in order to make the group composition law come out right.)
A polynomial p is invariant under G if gp¼ p for all g2G. The set of invariant polynomials
is denoted by K [V ]G and, like K [V ], it forms a vector space and a ring and an algebra:
invariant polynomials may be added, multiplied by scalars, and multiplied among
themselves and the result is again an invariant polynomial, and all the rules of arithmetic

are inherited from K [V ].
If p1, . . . , pk are polynomials then we can form further polynomials by taking sums of

products of powers of the pi and the set of all polynomials formed that way may be
denoted K [p1, . . . , pk]. It again forms a ring and an algebra and is called the ring or algebra
generated by the family {p1, . . . , pk}, which are called the generators. For example, if we let
k¼dim(V) and pi(x)¼xi for i2 {1, . . . , k} then K [p1, . . . , pk]¼K [V ]. Thus, K [V ] is

generated by just dim(V) basic polynomials, although as a vector space it is infinite-
dimensional. It is of interest, and not obvious, that this finite generation property is also
true of rings of invariant polynomials. Limiting ourselves to the case of interest to us, if V
is a finite-dimensional real or complex vector space that carries a representation of a finite

group G then K [V ]G is finitely generated. (We will not prove this statement.)
The finite generation property says nothing about uniqueness of the representation

in terms of generators. For example, consider the real plane, V¼R2, and let G be
the two-element group that is generated by reflection into the origin; so the non-
identity element of G maps (x, y) to (�x,�y). A general polynomial on V may be
written as

pðx, yÞ ¼
X1
i,j¼0

cði, j Þxiyj ð7Þ

and in order for p to be invariant under G it must be that c(i, j) 6¼ 0 only if iþ j is even: all
non-zero terms must be of even total degree. In this case, three polynomials suffice to

generate the invariant ring: K [V ]G¼K [x2, y2, xy], and also the reader can convince him or
herself that none of the generators is redundant; for example, xy is invariant but it is not
generated by the set of polynomials {x2, y2}. On the other hand, the representation of a
higher-degree invariant polynomial by these generators is not normally unique; for
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example, the polynomial x2y2 is represented as the product of generators in the form
(x2)(y2) and also in the form (xy)2.

For the case of interest to us, a finite group acting on a finite-dimensional real or
complex vector space, the finite generation property may be strengthened in a manner that

makes the representation unique.

Theorem: Let V be a finite-dimensional vector space over the real or complex field K and
carrying a representation of the finite group G. Then there exists a family of n¼ dim(V)
primary generators {pi2K[V ]G : 1� i� n} and a finite family of secondary generators

{q�2K [V ]G : 1���M} such that every f2K [V ]G has a unique representation in the form

f ðxÞ ¼
XM
�¼1

h�ð p1ðxÞ, . . . , pnðxÞÞq�ðxÞ ð8Þ

where h� is an arbitrary polynomial.

We refer to [65], Chapter 3 for a proof, and for a statement of the theorem in a more
general context. This representation expresses that K[V ]G has the Cohen–Macaulay
property. The primary invariants generate a polynomial ring, K [p1, . . . , pn]. A polynomial
h�(p1, . . . , pn) is just an element of that ring, and so it is seen that the secondary invariants

q� form a basis for a representation of K [V ]G as a free module with coefficients h� in the
ring K [p1, . . . , pn]. (A free module is essentially a vector space, but with coefficients in
a ring instead of in a field.)

Returning to the example of V¼R2 and the two-element group G generated by
reflections, we recognized that polynomial p is invariant if every non-zero monomial term
c(i, j)xiyj is of even total degree. But if iþ j is even then either i and j are both even or they
are both odd. The terms in which i and j are both even may be collected into a polynomial

of x2 and y2 and those with i and j both odd may be collected into xy times such a
polynomial. We see therefore that K [V ]G is generated in the Cohen–Macaulay form by
primary generators p1(x, y)¼ x2 and p2(x, y)¼ y2 and secondary generators q1(x, y)¼ 1 and
q2(x, y)¼ xy.

2.3. Application to potential energy surfaces

Here we give the essentials of the formal theory of invariant polynomials as applied to the
representation of potential energy surfaces. The independent variables are functions of the
internuclear distances, Morse variables in our work, denoted yij or collectively y, a vector

that has N(N� 1)/2 components where N is the number of atoms. The potential is
expressed as

VðyÞ ¼
XM
�¼1

h�ðpðyÞÞq�ðyÞ, ð9Þ

where p(y) is the vector formed by the N(N� 1)/2 primary invariant polynomials and q�(y)
(for 1���M) are the secondary invariant polynomials. The primary and secondary
invariant polynomials are invariant under all permutations of identical atoms, so under the
direct product of symmetric groups, one symmetric group for each kind of atoms.

588 B. J. Braams and J. M. Bowman

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



The number of primary invariant polynomials is equal to the number of variables, i.e.,
the number of internuclear distances, N(N� 1)/2 for an N-atom system. A finite number of

secondary invariant polynomials suffices to express all possible invariant polynomials, to
arbitrarily high degree, through Equation (9), although the number of secondary invariant
polynomials is not easily expressed in terms of the number of variables or the order of the

group. Finding these polynomials for direct product groups Sn�Sm� � � � �Sp (for
AnBm . . .Xp molecules) acting on the space of internuclear distances is non-trivial and
computational algebra software MAGMA [66] is therefore called on to perform the task.
Below we give examples of these polynomials for molecular systems of up to five atoms.

We make use of the Molien series which tells us the number of terms in the above
summation at each order. This series is the power series defined by

MðtÞ ¼
XM
�¼1

te�

 !
�n

i¼1ð1� tdi Þ�1 , ð10Þ

where pi has degree di and q� has degree e�.
Next we consider a few examples where explicit expressions for primary and secondary

invariant polynomials are given.

2.3.1. Two-atom and three-atom molecules

For the case of two atoms, equal or distinct, there is just one internuclear distance, r12. The
natural choice for the single primary invariant is the polynomial p1(r)¼ r12, and then for

the single secondary invariant the constant polynomial q1(r)¼ 1. The Molien series is
generated by M(t)¼ 1/(1� t). Once again we stress that even in this simple example the
primary and secondary invariants are not uniquely defined. The polynomial pðrÞ ¼ r212
could have been chosen as the primary invariant, with, for example, q1(r)¼ 1 and
q2(r)¼ r12 as secondary invariants.

For the case of three atoms there are three internuclear distances and therefore three
primary invariants, whatever the symmetry. For three unlike atoms there is no symmetry
operation other than the identity. As primary invariants we choose the three functions

p1(r)¼ r12, p2(r)¼ r13 and p3(r)¼ r23, and the single secondary invariant is q1(r)¼ 1. The
Molien series is generated by M(t)¼ (1� t)�3.

The first non-trivial case is A2B. According to our procedures there is a single primary
invariant associated with the AA system, polynomial p1(r)¼ r12 and two primary
invariants associated with the set of AB distances: p2(r)¼ (r13þ r23)/2 and p3ðrÞ ¼

ðr213 þ r223Þ=2. The single secondary invariant is q1(r)¼ 1. The Molien series is generated by
M(t)¼ (1� t)�2(1� t2)�1.

For A3 there are three primary invariants, pkðrÞ ¼ ðr
k
12 þ rk13 þ rk23Þ=3 for k¼ 1, k¼ 2,

and k¼ 3. The single secondary invariant is q1(r)¼ 1. The Molien series is generated by
M(t)¼ (1� t)�1(1� t2)�1(1� t3)�1.

As an aside we mention that for these small cases it is not too difficult to provide the
transformations between the vector space basis of invariant polynomials that is generated

by explicit symmetrization of a monomial basis and the vector space basis that is
generated by the primary and secondary invariants. However, we shall not carry out that
exercise here.
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2.3.2. A2B2 molecules

For the A2B2 system label the atoms A(1), A(2), B(3), B(4). There are six internuclear
distances, thus six primary invariants. One is a primary invariant that involves only the A2

system; this subsystem has only a single variable associated with it, r12, and that variable is
a primary invariant. Likewise there is one primary invariant associated with the B2 system,
r34. Finally the four AB distances permute among themselves; thus there are four primary
invariants that involve only these distances. Of these four, there is one of degree 1 and
three of degree 2. (More precisely, the primary invariants can be chosen so that one is of
degree 1 and three are of degree 2, and such a choice minimizes the product of the degrees.)

A natural choice for the degree-1 primary invariant for the AB subsystem is the
average AB distance. For the three degree-2 primary invariants there are several
reasonable choices. In the codes we use auxiliary variables (they are covariants) e0¼ (r13þ
r14)/2, e1¼ (r23þ r24)/2, f0¼ (r13þ r23)/2, and f1¼ (r14þ r24)/2, and in terms of these the
three degree-2 primary invariants are ðe20 þ e21Þ=2, ð f

2
0 þ f 21 Þ=2, and ðr

2
13 þ r223 þ r214 þ r224Þ=4.

Given that the primary invariants for the A2B2 system are chosen to be three of degree 1
and three of degree 2 then there are two secondary invariants, one of degree 0 and one of
degree 3. The secondary invariant of degree 0 is the polynomial that has the constant
value 1. In the codes, the secondary invariant of degree 3 is ðr313 þ r323 þ r314 þ r324Þ=4. Other
choices for the degree-3 secondary invariant are possible too.

2.3.3. A3B2 molecules

For A3B2 the atoms are labelled as A(1), A(2), A(3), B(4), B(5), there are 10 internuclear
distances, three AA distances, six AB distances, and a single BB distance. Again choosing
the degrees of the primaries in such a way that the product of degrees is minimized, there
should be three primaries for the AA system and they have degrees 1, 2, and 3; six
primaries for the AB system and they have degrees 1, 2, 2, 2, 3, and 6; and a single primary
for the BB system of degree 1.

For the three primary invariants for the A3 subsystem we chose polynomials
ðrk12 þ rk13 þ rk23Þ=3 for k2 {1, 2, 3}. The primary invariant for the BB subsystem is the single
BB distance, r45. For the primary invariants associated with AB distances there are again
several reasonable choices, and the choice that was made for the codes is obtained as
follows. Let e0¼ (r14þ r15)/2, e1¼ (r24þ r25)/2, e2¼ (r34þ r35)/2, f0¼ (r14þ r24þ r34)/3, and
f1¼ (r15þ r25þ r35)/3; then the six primary invariants for the AB system are:

p1 ¼ ðr14 þ r24 þ r34 þ r15 þ r25 þ r35Þ=6

p2 ¼ ðe
2
0 þ e21 þ e22Þ=3

p3 ¼ ð f
2
0 þ f 21 Þ=2

p4 ¼ ðr
2
14 þ r224 þ r234 þ r215 þ r225 þ r235Þ=6

p5 ¼ ðe
3
0 þ e31 þ e32Þ=3

p6 ¼ ðr
6
14 þ r624 þ r634 þ r615 þ r625 þ r635Þ=6:

ð11Þ

Given that the primary invariants are three of degree 1, four of degree 2, two of
degree 3, and one of degree 6, then the number of secondary invariants at each degree
starting at degree 0 is given by this sequence: [1, 0, 1, 6, 8, 6, 12, 14, 9, 8, 5, 2, 0, . . .].
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(There are no secondary invariants of degree 12 or higher.) The secondary invariant at
degree 0 is the constant 1. In order to describe the higher-degree secondaries it is useful to
introduce some conventions. Indices i0, i1, i2, will run over the A-nuclei and indices j0, j1
will run over the B-nuclei. Whenever two or more i-indices appear in a product then they
are all distinct; likewise for the j indices. Expressions such as r(i0, i1) or r(i0, j0) represent a
corresponding internuclear distance (or Morse variable). The S in what follows indicates
that the subsequent expression must be averaged over all choices of the i and j indices (it is
the same symmetrization operator defined in Section 2.1). With those conventions the
single secondary invariant of degree 2 is S[r(i0, i1)r(i0, j0)]. The six secondary invariants of
degree 3 are:

S½rði0, i1Þ
2rði0, j0Þ� , S½rði0, i1Þrði0, j0Þ

2
� , S½rði0, j0Þ

3
� , S½rði0, i1Þrði0, j0Þrði1, j0Þ� ,

S½rði0, j0Þ
2rði1, j0Þ� , S½rði0, i1Þrði0, j0Þrði0, j1Þ�:

ð12Þ

Of the eight secondary invariants of degree 4, one is obtained by taking the square of the
single secondary invariant of degree 2. The other seven are expressed thus:

S½rði0, i1Þ
2rði0, j0Þ

2
� , S½rði0, i1Þrði0, j0Þ

3
� , S½rði0, j0Þ

4
� , S½rði0, i1Þ

2rði0, j0Þrði1, j0Þ� ,

S½rði0, i1Þrði0, j0Þ
2rði1, j0Þ� , S½rði0, j0Þ

3rði1, j0Þ� , S½rði0, j0Þ
3rði0, j1Þ�:

ð13Þ

We do not list the higher degree secondary invariants here.

2.4. Dipole moment

The dipole moment is a vector and thus its representation in terms of invariant
polynomials must reflect this. A straightforward way to address this is to represent the
dipole moment ~� as a vector sum of effective charges:

~� ¼
X
i

wiðX Þ~xðiÞ, ð14Þ

where X denotes the molecular configuration, wi(X) is the effective charge on the i-th
nucleus (this effective charge depends on the entire configuration) and ~xðiÞ is the position
vector of the i-th nucleus. The effective charges are scalar quantities, which can be
expressed in terms of internuclear distances alone. They are expanded in a set of basis
functions, wi(X)¼

P
kckbk(i,X), where bk is the k-th basis function, depending on the

nuclear index i as well as on the configuration X, and the coefficients ck are obtained by
solving a weighted least squares system with the ab initio dipole moment data on the right-
hand side. Similar to the expansion of the potential energy the basis functions are
polynomials in Morse variables.

It appears that the expansion of the dipole moment is essentially the same as that of the
potential, but there is a twist when permutations of identical nuclei are considered. Like
the potential energy the dipole moment is invariant under permutation of identical nuclei,
but in order to make it invariant the functions wi(X) in Equation (14) must transform like
a covariant: if configuration X is transformed into X0 by interchange of identical nuclei
i and j then pair (wi(X), wj(X)) is equal to the pair (wj(X

0), wi(X
0)). Ideally we would have a

compact library of appropriate covariant basis functions for each molecular symmetry
group, but to date we have used a somewhat indirect and not quite optimal approach.
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Consider an AmBn molecule and let the index i belong to an A-atom. Then the function wi,
which is a component of a covariant for the group Sm� Sn, is also an invariant for the
smaller group Sm�1�Sn�S1, so for the Am�1BnC1 molecule. Relying on that, we can
directly use our comprehensive invariants library to represent these covariants as well and
fit a dipole moment. A drawback to this approach enters when the behaviour of the dipole
moment under translations is considered. If Z the total charge of the molecule and if Xþ ~y
is the result of applying a uniform displacement ~y to all atoms in the configuration X then
it must be that ~�ðXþ ~yÞ ¼ ~�ðX Þ þ Z~y. The fitted dipole moment will satisfy this condition
if
P

iwi(X)¼Z, but in our present work this condition is not built into the basis, rather it
is imposed as an additional constraint in the least squares system, and is therefore not
satisfied exactly.

2.5. Library of invariant polynomial basis functions

A Fortran-95 library has been written that contains code to compute primary and
secondary invariants and a polynomial basis, up to some maximum degree, for almost all
molecular permutational symmetry groups of at most 10 atoms total. (The exceptions at
this time are the A6B4 system and systems containing eight or more identical atoms; these
exceptions will be filled in.) The code for the computation of the secondary invariants is
largely computer-generated. Magma computer-algebra procedures were used to print out
representations of the invariant polynomials that could be translated into Fortran (or C, if
we would have chosen that) in a quite direct manner. The principal kind of routine from
the user point of view is a subroutine with a name such as mg421-base; the digits indicate
the permutation symmetry group, here that of the A4B2C1 molecule, and the subroutine
takes as argument a vector of internuclear distances and an integer that is the maximum
polynomial degree; it returns a vector of which each component is the value of an invariant
basis function evaluated for the given vector of internuclear distances or Morse variables.
When constructing the fitted potential energy surface that output vector becomes a row in
the matrix that defines the least squares system, and when evaluating the potential energy
that output vector is multiplied in an inner product with the coefficient vector that solved
the least squares system. Additional procedures in the library make it easy to apply the
invariant polynomials in the context of a many-body expansion. Further procedures are
provided to set up and solve the least squares system. The data can be function values,
function values and gradients, or function values, gradients and Hessians.

The compiled library is available for download at the iOpenShell website [http://
iopenshell.usc.edu/downloads/ezpes/] in connection with potential energy surfaces for
specific molecules.

3. Applications

In this section we give details of several applications of the fitting methods described in the
previous section including practical aspects of generating the database of electronic
energies, etc.

First, we comment on the use of Morse variables, yij¼ exp(�rij/a) instead of the rij for
global fitting. It is clear that representing V in terms of the latter variables will not yield a
physically correct description in the limit of asymptotically large values of rij, since V will
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diverge as these variables go to infinity. By contrast the Morse variables go to a constant

(zero) in this limit and this permits a correct physical description of the potential in these

fragmentation regions. The terminology ‘Morse’ comes directly from the observation that

the well-known Morse potential VM(r) is given simply by the three-term expression

D(y0� 2y1þ y2) in contrast to the infinite order expansion in the variable r.
The observant reader will note that if a single, global expression is used for V that this

representation does not rigorously become separable in fragment coordinates, except in

the case of atomþmolecule fragments. Our extensive experience with fitting using a single

global representation is that the artificial dependency is generally quite small, i.e., of the

order of 10 cm�1 (0.03 kcal/mol) or less. We have used other approaches to remove this

small dependency, e.g., switching functions [67,68], fitting many-body representations that

contain damping functions that give the correct asymptotic behaviour [25,26]. We direct

the interested reader to these cited references for more details. It remains to make some

remarks about the nonlinear parameter, a, in the definition of yij. In principle this range

parameter could be optimized for each fit and could even be made dependent on i and j.

However, our experience with fitting roughly 20 potentials, indicates that the fits are

largely insensitive to the precise value of a provided it is in the range 1.5–3 bohr; a typical

value is 2.0 bohr. The physical condition is that the potential in, say, a particular bond ij,

should be tending to a constant for rij in the range 4–8 bohr. As long as the basis functions

in yij are still varying in this range we rely on the numerical fitting procedure to produce

the correct results.
The least squares fitting is done using standard library routines including singular

value decomposition (from the LAPACK library) and employs simple weighting of the

data, the details of which depend on the particular application.
Next we give some details on how the database of electronic energies is obtained.

Generally there is a trade-off to be made between local accuracy and global coverage,

depending on the intended application. If the interest is in ro-vibrational spectroscopy

then one requires the highest possible accuracy, but only in the vicinity of a reference

configuration, where the nuclear wavefunction is significantly different from zero. In this

extreme limit where fragmentation is not of interest fragment data are not needed for the

database.
At the opposite end of the trade-off between local accuracy and global coverage are

applications to bimolecular reaction dynamics. Clearly this is the most demanding limit as

reactants and products can have any relative orientation and impact parameter, and in

addition multiple isomers can be formed. An example of a potential surface where this

applies is one we developed for the C(3P)þC2H2 reaction to give linear-C3H and cyclic-

C3HþH [25].
An intermediate case is illustrated by unimolecular reactions, where an energetic

molecule can fragment to a single channel. Examples of this are PESs describing the CHþ5
cation and the water dimer, both of which are described below. If multiple reaction channels

are possible and also where ‘roaming’ dynamics can play a role, then the PES has the full

complexity of bimolecular reaction dynamics PES. An example of this is the unimolecular

dissociation dynamics of acetaldehyde for which a PES has been developed [69].
To conclude this preamble we note a recent application of the invariant fitting method

for the vinyl radical, where two PESs were reported [21]. One PES was fit to a subset of

ab initio electronic energies that spanned the two equivalent global minima and the
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saddle-point separating them. This PES was used in accurate calculations of the

vibrational energies. A second PES was fit to these energies plus HþC2H2 fragment

data, the dissociation saddle point, and the high energy 1,2 H-atom migration regions of

the PES.
In the following discussion of techniques for sampling configuration space we have in

mind mainly applications to dynamics, where barrier crossings and reaction processes are

all of interest.
For a three-atom system the geometries for the database can be obtained from a

regular mesh in suitable internal coordinates, but already for a four-atom system (six

degrees of freedom) this is not really feasible for global potentials. One can then consider

placement of configurations on ‘sparse grids’, and for some applications, e.g., Multimode

vibrational calculations, this may be appropriate. (The sparse grids do not need to be

associated with normal modes of the system as they are in the Multimode and related

codes [36–40], as was discussed briefly in the previous section. These grids can be defined

with respect to any system of internal coordinates and this is the basis of the so-called cut-

high dimensional model representation [42,57,58], also briefly reviewed in the previous

section.) However, in our work for systems of three or more atoms we have relied almost

exclusively on sampling procedures that produce scattered data. And as noted already the

PESs have generally required of the order of a few tens of thousands of energies, although

the PES for CH3CHO is a fit to roughly 135,000 energies, owing to its great complexity.
Generally we aim to construct highly accurate surfaces based on the best affordable

ab initio method. However, the procedure to develop such PESs generally starts with a

reasonable PES based on a low-level method and basis. At the earliest stage of

constructing a PES we may use direct ab initio molecular dynamics (AIMD) calculations

to sample the configuration space; we also sample the space by making random

displacements from known geometries. The AIMD calculations are done at several total

energies using the efficient density functional theory, generally with the B3LYP functional,

and using a small basis, e.g., VDZ, or even Hartree–Fock with a minimal basis, depending

on the molecular system. Once we have obtained an initial sample of geometries then we

carry out higher-level calculations, construct an initial fitted surface, and proceed to

improve that initial surface through further sampling and further ab initio calculations. We
use the Molpro program package [70] almost exclusively, and for the case of DFT methods

we thereby obtain analytical gradients and also a dipole and quadrupole moment.
The iterative improvement of a PES involves a combination of techniques. We carry

out a quasi-Newton search for all stationary configurations on the surface; additional

ab initio electronic energies are then obtained in the vicinity of these configurations. We

always perform further molecular dynamics calculations to sample the configuration

space, and often diffusion Monte Carlo calculations of the ground state wavefunction on

the preliminary PES as well. The database of configurations from such sampling is pruned

by removing near-duplicate configurations. (For this purpose we have designed tests for

similarity that involve only permutationally invariant functions of internuclear distances,

so we recognize the similarity between configurations in arbitrary relative position and

with arbitrary relabelling of nuclei.) A new fit is then done and the process proceeds
iteratively until a satisfactory PES is obtained.

We have often used a two-stage procedure in which at first we construct a reasonable

PES based on DFT calculations and then we proceed to construct a surface based on the
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higher quality coupled cluster method. In cases where the final surface is based on very
expensive ab initio calculations we have used the earlier dataset to identify a relatively
small subset of the database that is adequate to reproduce the surface, and for which the
higher-quality and higher-cost ab initio calculations are to be carried out and a new final
PES obtained. This strategy was used very effectively to obtain a full-dimensional very
high-level PES for malonaldehyde that described the H-atom transfer and was used in
essentially exact calculations of the tunnelling splitting of H- and D-atom transfer [20].

Next we present the salient aspects of three PESs that illustrate the methods described
above. They are PESs for CHþ5 , the water dimer, and CH3CHO unimolecular dissociation.

3.1. CHY5
Research on the CHþ5 cation has a rich history and we refer the reader to references [67]
and [71] for background material. CHþ5 is also of fundamental interest owing to its highly
fluxional nature, even in the zero-point state. Thus it is a molecule that truly requires a
proper treatment of the permutational symmetry of the five H atoms. We obtained such a
PES [67] by fitting 36,173 CCSD(T) energies obtained with the aug-cc-pVTZ basis using
the invariant polynomial methods described in the preceding section. This PES, given in
terms of the 15 internuclear distances, mapped to Morse variables, was the successor to an
earlier one based on fitting MP2/cc-pVTZ energies [72]. The database of configurations
was obtained using a variety of strategies; however, the major one was based on direct
dynamics. AIMD trajectories were propagated using the efficient MP2/cc-pVTZ method
and basis. These were done at three total energies and the distribution of potential values
for a total energy of 3000 cm�1 is shown in Figure 1. As seen, the distributions are

Figure 1. Distribution of ab initio molecular dynamics electronic energies for CHþ5 run at the total
energy of 3000 cm�1 relative to the global minimum.
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Gaussian-shaped with the maximum occurring at roughly half the total energy. The most
recent CCSD(T)-based PES configurations from these distributions were supplemented
with additional high energy ones from direct-dynamics calculations (done at the MP2/
cc-pVDZ level of theory and basis). In addition, a dissociation coordinate, defined as the
distance between the H2 centre of mass and the C atom of the CHþ3 , was used to obtain
many additional configurations.

The energy distribution of the ab initio data used in the fit (relative to the global
minimum energy) is shown in Figure 2. As seen, most of the dataset is at energies below
50,000 cm�1, with a large concentration of energies below the dissociation energy of
roughly 16,000 cm�1. Energies above that value are from configurations where bonds are
highly compressed.

The PES obtained from these data was fit using permutationally invariant polynomials
up to total degree 7. Thus there are roughly 2300 terms in the fit. The fitting error (root
mean square deviation between the fit and the data) is shown in Figure 3 as a function of
the maximum energy in the sample. As seen, it is very small, indicating a very precise fit.
An indication of the precision is shown in Table 7 where the geometry and normal mode
frequencies are given for the global minimum, denoted Cs(I), and two low-lying first-order
saddle points, denoted, Cs(II) and C2v. As seen, the PES describes these properties very
well and schematic representations of the structures of these stationary points are shown in
Figure 4. In addition the energies of the Cs(II) and C2v saddle points on the PES, 29.1 and
340.7 cm�1, respectively, are in excellent agreement corresponding to CCSD(T)/aug-
cc-pVTZ values of 37.7 and 331.2 cm�1. The geometry and harmonic normal mode
frequencies at these stationary points on the PES are given in Table 7 where agreement
with direct ab initio results, also given in the table, is very good.

The potential surface dissociates accurately to fragments CHþ3 þH2 with an accurate
De. The harmonic normal frequencies of these fragments are given in Table 8 where the
comparison with direct ab initio results shows good agreement.
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Figure 2. [Colour online] Distribution of electronic energies for CHþ5 PES.
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Table 7. Geometry (Ångstroms) and normal mode frequencies (cm�1) from the CHþ5
potential energy surface at the minimum and two saddle points, denoted Cs(I), Cs(II)
and C2v, respectively. Results from ab initio calculations are given in ref. [67].

Cs(I) Cs(II) C2v

Bond
C-Ha 1.108 (1.106)a 1.084 (1.084) 1.163 (1.162)
C-Hb 1.197 (1.198) 1.200 (1.199) 1.087 (1.087)
C-Hc 1.197 (1.197) 1.100 (1.098) 1.142 (1.140)
C-Hd 1.088 (1.088)
H2 0.952 (0.945) 0.945 (0.940)

Mode
1 199.9 (227.4) 188.6i 698.5i
2 839.4 (831.3) 995.7 497.7
3 1296.7 (1284.3) 1151.2 1261.1
4 1303.5 (1291.2) 1340.3 1332.6
5 1477.7 (1464.1) 1482.1 1393.2
6 1499.9 (1492.9) 1507.1 1452.1
7 1586.7 (1595.8) 1603.2 1476.3
8 2417.9 (2430.1) 2401.1 2639.9
9 2707.7 (2714.9) 2728.8 2685.0
10 3001.0 (3011.0) 3037.8 2848.0
11 3132.9 (3130.2) 3090.5 3122.0
12 3224.4 (3224.4) 3236.1 3239.1
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Figure 3. [Colour online] Root mean square fitting error (RMS) of the CHþ5 PES vs. Emax, defined in
the text. De is the electronic dissociation energy.
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This PES and in some instances the fitted dipole moment surface, which was also
obtained [72], has been used in a number of quantum calculations of the vibrational
energies of CHþ5 [71,73–76] and quasiclassical trajectory calculations of the exchange
reaction CHþ3 þHD!CH2D

þ
þH2 [77].

It should be noted that a PES for CHþ5 has also been reported [64] using the post-
symmetrized modified Shepard method, which was briefly reviewed in the previous
section, based on CCSD(T)/aug0-cc-pVTZ ab initio data, where aug0 indicates no diffuse
functions for the H atoms.

3.2. (H2O)2

Next consider the PES for the water dimer. This is a recent application with several
versions of the PES reported. In the first report [14] the PES was a fit to roughly 20,000
CCSD(T)/aug-cc-pVTZ electronic energies in 15 Morse variables. A second version of this
PES, denoted HBB1, was reported recently and used in essentially exact quantum
calculations of the vibration/rotation tunnelling splittings and rotation constants of
(H2O)2 and (D2O)2 [78], where the agreement with experiment was shown to be of
unprecedented quality. HBB1 was a fit to roughly 30,000 CCSD(T)/aug-cc-pVTZ
electronic energies (obtained by adding roughly 10,000 energies to the database of

Figure 4. Structure of CHþ5 global minimum and two low-lying saddle-points from the PES.

Table 8. Normal mode frequencies of CHþ3 and H2 from the CHþ5
PES. Numbers in parentheses are from CCSD(T)/aug-cc-pVTZ
calculations of [67].

Mode CHþ3 H2

1 1390.2 (1421.6)a 4377.0 (4400.2)
2 1412.1 (1429.0)
3 1412.1 (1429.0)
4 3031.2 (3039.3)
5 3195.7 (3236.9)
6 3195.7 (3236.9)
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20,000 used in the first fit). This fit is a combination of a global expression in all the
internuclear distance Morse variables, with range parameter equal to 3.0 bohr, of total
polynomial order of 7 with 5227 terms plus damped two-body terms. This potential, like
the one for CHþ5 , dissociates to fragments, in this case two water monomers.

An even more recent PES, denoted HBB2, was reported. The major difference in this
PES is that it gives the essentially exact electronic dissociation energy, De (4.98 kcal/mol)
[79]. (The previous PESs gave a De that is below the ‘‘exact’’ De by 0.26 kcal/mol.) This was
achieved by noting that the counterpoise corrected CCSD(T)/aug-cc-pVTZ electronic
energies slightly underestimate De (whereas the uncorrected energies slight overestimate
De, as usual). Thus we took a simple average of the two sets of energies to get a database of
energies with the correct De. The high precision of the fit gave a De in virtually perfect
agreement with that correct De.

The energies of 10 low-lying stationary points, including the global minimum, and
harmonic frequencies of the minimum for HBB1 and HBB2 are given in Tables 9 and 10,

Table 10. Harmonic frequencies (cm�1) at the global minimum on
indicated PES and benchmark (CCSD(T)/avqz) values.

Mode HBB1 HBB2 Benchmark

1 120 126 130
2 132 141 146
3 142 149 152
4 180 181 186
5 351 351 354
6 601 610 619
7 1646 1653 1651
8 1661 1673 1671
9 3734 3757 3748
10 3805 3827 3825
11 3894 3915 3912
12 3911 3934 3931

Table 9. Relative energies (cm�1) of 10 stationary points on indicated PES and
benchmark value [79]. Ni is the order of the stationary point.

Str. No. Sym. Ni HBB1 HBB2 Benchmark

1 (Min) Cs 0 0 0 0
2 C1 1 164.1 185.3 181.0
3 Cs 2 196.7 210.2 199.4
4 Ci 1 244.7 260.7 242.7
5 C2 1 328.6 354.4 331.1
6 C2h 3 347.0 375.5 347.0
7 Cs 2 601.4 640.9 627.3
8 C2h 3 1176.4 1230.4 1236.2
9 C2v 1 588.9 629.2 618.1
10 C2v 2 897.1 946.1 939.2
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respectively, along with benchmark results. As seen, there is excellent agreement with

benchmarks results.
The structure of the stationary points is shown in Figure 5 and Figure 6 shows the

behaviour of HBB2 along a cut where the OO distance varies and the monomer geometries

are fixed at their values at the global minimum (str01). As seen, the curve is quite smooth.

In addition we have verified that it does have the proper dipole–dipole distance

dependence, at least over the range of the plot. At very long range the potential decays
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Figure 6. Potential cut of the water dimer PES.

Figure 5. [Colour online] Stationary configurations of the water dimer; str01 is the global minimum.
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exponentially. This potential along with a soon-to-be-published three-body potential, also
fit using invariant polynomials, is planned to be the major component of a flexible, many-
body potential for arbitrary numbers of water monomers.

3.3. CH3CHO

We conclude this section with the most complex PES we have considered to date, namely
one describing the unimolecular dissociation of 1CH3CHO, where our interest centred on
the molecular and radical products, CH4þCO and CH3þHCO, respectively.

The potential landscape of this system is shown in Figure 7, where the complexity of
this system can be appreciated. This is a challenging system, not only due to the large
number of atoms and many isomers and fragment channels but technically as well because
there are multi-reference regions of configuration space, e.g., the doubletþ doublet
radicals CH3þHCO. We dealt with this essentially by interpolating through the multi-
reference regions. That is, the database of roughly 135,000 CCSD(T)/cc-pVTZ energies
was obtained in the single reference regions of configuration space and also from separate
calculations for a number of fragments, including CH3þHCO. The least squares fitting
was done with invariant polynomial bases of total order 5 and 6. There are 2655 terms in
the fifth degree fit and 9953 in the sixth degree fit. Two fits were done in this case because
of the high complexity of the problem and also to use in dynamics calculations, where the
lower order fit is more efficient to evaluate. The least squares procedure smoothly
interpolates between the single reference region, e.g., the CH3CHO well region and, say,
the radical channel CH3þHCO. A simple example of how this works is the H2 molecule,

Figure 7. [Colour online] Energy landscape of CH3CHO PES.
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which is well described by a single-reference wavefunction except in the region of
dissociation where that description breaks down. However, we know that asymptotically

the correct limit is two H atoms with a total electronic energy of �1 h. Thus, if that data is
included in a database of energies that contains energies in the single-reference region

a least squares fit will smoothly interpolate between the two limits. An example of this

interpolation for the CH3þHCO channel is shown in Figure 8 from the global minimum.
This figure also contains multi-reference, ab initio calculations (MRCIþQ) of the

electronic energy to test the reality of the PES interpolation. As seen, the PES does
produce a smooth result in qualitative agreement with the MRCIþQ energies, as

expected. However, as seen, the PES cut decays more gradually than the correct result.
Further (unpublished) investigations indicate that the main cause of this behaviour is the

placement of the CH3þHCO fragment data. That is, the choice of what CC distance to
centre that data will obviously determine the rate at which the interpolation becomes

asymptotic. With the multi-reference energies as a guide we now know better where to

place the fragment data, and new fits based on roughly 30,000 MRCIþQ energies are
being developed presently.

The energetics of these two PESs are compared to benchmark results for a variety of

stationary points (which are single reference in character) and to fragment channels in
Table 11. Note ‘TS1 (1–2)’, etc. refers to the saddle-point transition state connecting

minima ‘1’ and ‘2’. As seen, the PESs do faithfully represent the ab initio energies.
Quasiclassical trajectory calculations were performed on both PESs and substantial

‘roaming’ dynamics was found, i.e., molecular products were formed via a pathway that
by-passes the conventional molecular products saddle-point transition state, TS4 (1–10).

The experimental and theoretical signature of this other pathway is very highly excited
CH4, following photolysis at 308 nm [80].
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Figure 8. Potential for dissociation of CH3CHO to CH3þCHO.
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4. Summary

We reviewed methods to incorporate permutational symmetry into global representations
of potential energy surfaces. A direct symmetrization method to do this was presented,
mainly for pedagogical purposes, where basis functions in Morse variables were explicitly
symmetrized starting with simple monomial functions. More sophisticated and compact
basis functions were described making use of theorems and computational algorithms
from the field of invariant polynomial theory. The dipole moment was also represented
using these invariant basis functions. Currently basis functions for PESs with up to 10
atoms have been developed.

By construction these PESs contain all permutationally equivalent stationary points
and so they can be used in complex dynamics calculations where isomerization, etc. can
occur. The other major benefit in using permutationally invariant basis functions is that
complex PESs for fairly large molecules can be constructed with only of the order of tens
of thousands of electronic energies. We described how the electronic energies are selected
for the fitting, and low-level ab initio molecular dynamics are often the first step in creating
the database of energies. The potentials are linear least squares fit to these energies and so
the fitting is quite straightforward.

Roughly 20 PESs have been fit with these methods and these can be downloaded from
the website iOpenshell (http://iopenshell.usc.edu/downloads/ezpes/). Here we illustrated
the methods, including their practical implementation, for three challenging systems, CHþ5 ,
(H2O)2 and CH3CHO. For CHþ5 and (H2O)2 roughly 30,000 electronic energies were
sufficient to obtain smooth precisely-fit PESs that dissociate to a single set of fragments.
For the much more complex CH3CHO system the PES was a fit to roughly 135,000
electronic energies. Very recently, we have fit the intrinsic three-body interaction for the
water trimer [81]. The goal of this work is to combine that potential with the water dimer
PES (described briefly in this review) to have a general many-body PES for water.

Table 11. Comparison of the fitted potential energy surfaces and ab initio benchmark
calculations for selected stationary points on the H4C2O surface (kcal/mol).

Species CCSD(T)/CBSþCV Fifth order PES Sixth order PES

1. Acetaldehyde 0.0 0.0 0.0
2. Vinyl alcohol 9.1 13.5 15.0
3. Hydroxyethylidene 50.8 54.0 53.4
4. TS1 (1-2) 70.8 72.4 72.5
5. TS2 (1-3) 83.0 87.2 85.6
6. TS3 (2-3) 75.5 87.6 81.6
7. TS4 (1-10) 87.5 84.8 96.1
8. TS5 (3-10) 110.9 102.6 108.0
9. TS6 (1-11) 86.0 91.8 95.1
10. CH4þCO �2.0 �2.5 �1.6
11. CH2COþH2 35.2 43.5 37.1
12. CH3þHCO 90.8 91.0 94.0
13. CH3COþH 95.6 100.9 100.5
14. CH2CHOþH 102.5 103.7 103.9
15. CH3þCOþH 110.5 104.7 106.0
16. CH2CHþOH 124.5 141.7 142.0

International Reviews in Physical Chemistry 603

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Acknowledgements

We thank the Department of Energy and the Office of Naval Research for supporting this work.
BJB thanks Prof. Gregor Kemper for advice about invariant computations with Magma.

References

[1] G. C. Schatz, Rev. Mod. Phys. 61, 669 (1989).

[2] T. Hollebeek, T. S. Ho, and H. Rabitz, Annu. Rev. Phys. Chem. 50, 537 (1999).
[3] K. Bolton, W. L. Hase, and C. Doubleday, J. Phys. Chem. B 103, 3691 (1999).
[4] K. Bolton, W. L. Hase, H. B. Schlegel, and K. Song, Chem. Phys. Lett. 288, 621 (1998).

[5] L. P. Sun, K. Y. Song, and W. L. Hase, Science 296, 875 (2002).
[6] L. P. Sun and G. C. Schatz, J. Phys. Chem. B 109, 8431 (2005).
[7] D. Troya, R. Z. Pascual, and G. C. Schatz, J. Phys. Chem. A 107, 10497 (2003).

[8] J. Z. Pu and D. G. Truhlar, J. Chem. Phys. 116, 1468 (2002).
[9] D. Troya and E. Garcia-Molina, J. Phys. Chem. A 109, 3015 (2005).
[10] A. Gonzalezlafont, T. N. Truong, and D. G. Truhlar, J. Phys. Chem. 95, 4618 (1991).
[11] Y. Qi, K. L. Han, and A. J. C. Varandas, Chin. J. Chem. Phys. 20, 109 (2007).

[12] A. Brown, B. J. Braams, K. Christoffel, Z. Jin, and J. M. Bowman, J. Chem. Phys. 119, 8790

(2003).
[13] Z. Jin, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 110, 1569 (2006).
[14] X. Huang, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 110, 445 (2006).

[15] A. Shank, Y. M. Wang, A. Kaledin, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130,
144314 (2009).

[16] Y. Wang, S. Carter, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 128, 071101 (2008).
[17] A. R. Sharma, J. Y. Wu, B. J. Braams, S. Carter, R. Schneider, B. Shepler, and J. M. Bowman,

J. Chem. Phys. 125, 224306 (2006).
[18] X. Huang, B. J. Braams, S. Carter, and J. M. Bowman, J. Am. Chem. Soc. 126, 5042 (2004).
[19] X. Huang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005).

[20] Y. Wang, B. J. Braams, J. M. Bowman, S. Carter, and D. P. Tew, J. Chem. Phys. 128, 224314

(2008).
[21] A. R. Sharma, B. J. Braams, S. Carter, B. C. Shepler, and J. M. Bowman, J. Chem. Phys. 130,

174301 (2009).
[22] X. B. Zhang, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 124, 021104 (2006).
[23] G. Czako, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009).

[24] G. Czako, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 112, 7466 (2008).
[25] W. K. Park, J. Park, S. C. Park, B. J. Braams, C. Chen, and J. M. Bowman, J. Chem. Phys. 125,

081101 (2006).
[26] C. Chen, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 127, 104310 (2007).
[27] S. L. Zou and J. M. Bowman, Chem. Phys. Lett. 368, 421 (2003).

[28] X. B. Zhang, S. L. Zou, L. B. Harding, and J. M. Bowman, J. Phys. Chem. A 108, 8980 (2004).
[29] J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandos, Molecular Potential

Energy Functions (John Wiley, Chichester, 1984).
[30] A. Schmelzer and J. N. Murrell, Int. J. Quant. Chem. 2, 287 (1985).

[31] M. A. Collins, Theor. Chem. Acc. 108, 313 (2002).
[32] G. E. Moyano and M. A. Collins, Theor. Chem. Acc. 113, 225 (2005).
[33] M. A. Collins, Comput. Sci. – ICCS 2003, Pt IV, Proc. 2660, 159 (2003).
[34] M. A. Collins, J. Chem. Phys. 127, 024104 (2007).

[35] K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys. 108, 8302 (1998).
[36] S. Carter, S. J. Culik, and J. M. Bowman, J. Chem. Phy. 107, 10458 (1997).
[37] J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003).

604 B. J. Braams and J. M. Bowman

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



[38] J. M. Bowman, T. Carrington, and H. D. Meyer, Molec. Phys. 106, 2145 (2008).
[39] G. Rauhut, V. Barone, and P. Schwerdtfeger, J. Chem. Phys. 125, 054308 (2006).
[40] K. Yagi, C. Oyanagi, T. Taketsugu, and K. Hirao, J. Chem. Phys. 118, 1653 (2003).
[41] H. Rabitz and O. F. Alis, J. Math. Chem. 25, 197 (1999).

[42] G. Y. Li, C. Rosenthal, and H. Rabitz, J. Phys. Chem. A 105, 7765 (2001).
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